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1. INTRODUCTION

In this paper, we generalize the results of {2] and [3] concerning interpolation
by multivariate L-splines defined on rectangular partitions. In Section 2, we
sharpen the resulis of [6] for interpolation by ““y-elliptic L-splines”, cf,
Section 2, of one variable. In Section 4, we define and study the interpolation
of smooth, real-valued functions which are defined on a rectangular parallele-
piped and in Section 5 we define and study the interpolation of smooth,
real-valued functions which are defined on a ball. We remark that the inter-
polation schemes introduced in this paper may be used, in an obvious manner,
to develop multivariate quadrature schemes. The details of this development
are left to the reader.

Now we recall some multivariate notation which will be used throughout
this paper. For any point

xE(xla---,xN)ERN, |x| E(xlz"f‘""*‘xNz)”Z,

If «=(ay,...,0y) is an N-tuple with nonnegative integer components, then

251 N
X% = ¥ XN D= DN, DN = 2 2
! N> ! R P

le| = oty + o+ + oy, and & =max; .;<yay. If £ is a closed, bounded set in
RN and n < m are nonnegative integers, then

CH() = { fe Cm(int )| fis real-valued, ! > sup [D* f(x)] < oo,

x|< m xeint

and D*f(x) =0 for all x € 62 and for all « with || <5 — 1}

and
Ifllem@y= 2 sup |[D*f(x)],  forallfe C,(5).

Ja|<m xeint 2
Similarly, if ¢ is a positive integer and »n is a nonnegative integer with n < ¢,

BH) is the set of all real-valued functions fe L*(£2) such that D*f exists
9 127
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almost everywhere and is a square integrable function for all « such that
a&<t, D*fe C(Q) for all « with || < Nt — 1, and D* f (x) =0 for all x € 652
and all « with || <n—1. We set

1/ sty = C 1D* fllE2@0)'?

for all f € B,}(£2), where the summation is over all « with & < z. Moreover, we
define

By *Q)={feB/(Q)|D feB'(Q),0<k<t1<i<N}
and

”f”vf,'"(s?) = (Z IlDi"fllﬁz(g))”z,

where the summation is over all k, 0 < k < ¢, and all i, 1 < i < N. Finally, the
symbol K will be used repeatedly to denote a positive constant, not necessarily
the same at each occurrence.

2. ONE-DIMENSIONAL RESULTS

In this section, we introduce y-elliptic L-splines and study their properties.
In particular, we prove analogs of Theorems 6-9 of [6], which give error
bounds for interpolation by L-splines.

Given —w < g < b < w, for each nonnegative integer M, let £, denote
the set of all partitions, 4, of [a,b], of the form

diga=x"<xl< o< xM<xMil=p,

and let £ =% Py. Define A =max,; <y (x**! — x%). Throughout this
section, the norms used are the L2 norm over [a, b] except where explicitly
indicated otherwise. If m is a positive integer, let L be any mth-order linear
differential operator of the form

Lu) = 3 a®) Du(), m>1, @1
=0
where we assume that the coefficient functions a;(x) € B"(a,b) and that there
exists a positive real number w such that
a4, (x)>w>0 forall xela,bl 2.2)

The formal adjoint of L is given by L*(u(x))= >™, (—1) D’(a;(x)v(x)).
For each 4 € 2, let Z 4~ denote the set of admissible incidence vectors defined
as follows: if 4 € &,

Z'=9;
ifde Py, where M > 1,

Z " = {z]z is an M-vector with integer components z; satisfying 1 < z; < m}.
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For each 4 € Zy and z € Z 4", Sp(L, 4, z) denotes the collection of all real-
valued functions, s(x), called L-splines, defined on [a,5] such that

L*I(s(x))=0 forall xe(x/,x*1), foreachO<j<M, (2.3
and
Drs(x/—) = D¥s(x'+) forall O<k<2m—1—z, I<ij<M (2.4
An L-spline, s(x), is said to be a y-elliptic L-spline if and only if
YID™ wl < IL(w)l 2.5)
for all we B,™({a,b]). Finally, we define the interpolation mapping
I:C™Y(a,b) - Sp(L,4,2), by I(f) = s(x), where

Dif(x), O<k<z,—1, 1<j<M,
Ds(x%) = {
LDEf(x)), O<k<m—1, j=0,M-+1.

We remark that this mapping actually corresponds to the type I interpolation
of [6] and as such, the nontrivial fact that it is well-defined was shown in [6].
Mappings corresponding to the types II, I1I, and IV interpolation of [6] can
be defined, too, for which results analogous to those of this paper are true.
The details are left to the reader.

We begin by recalling the “integral relations” of Theorems 4 and 5 of [6].

THEOREM 2.1. Let L be a differential operator of the form (2.1} such thar
(2.2) is satisfied.

) IfzeZ ", AP, and f € B™(a,b), then
ILOOI? = ILCf = IO + LA
() IfzezZ ™ Ae P, and f e B*(a,b), then
ILCf = INIP < L= IFIIL* L(HI

Now we prove improved analogs of Theorems 6-9 of [6].

THEOREM 2.2. Let L be a differential operator of the form (2.1) such that
(2.2) and (2.5) are satisfied.
Q) FO<j<mzeZ Ade P, and fe B™(a,b), then
=<2 () e-mi< 2 (5]
) IfO<j<sm—1,zeZ”, 4 € P, and f € B™(a,b), then

. m' T 172 A m—j—l/Z[ ~ ~
D= lean < (717) (5) WO

ml { w \V2 A\
<l G
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Proof. Since f— If € C™ [a,b], we can apply to it Rolle’s Theorem; thus
there exist points {£}31~/ in [a, b] such that
DiI(f=I(EMN =0, O<I<M+1—j, O<j<m—1,
where
a=EP <EP < <R y=b,  and  ED<EID <,

O0<I<M+1—j,0<j<m— 1. Moreover, |3 — EP,| <(j+ 1A for any
O0<l<M—j, 0<j<m— 1. Hence, applying the Rayleigh-Ritz inequality,
we have

16}

178 . j 172 E;i)l .
[ w-npas<| LI [ Hpm-ippas @)

for 0<lI< M —j, 0<j<m~— 1. Summing both sides of (2.6) with respect to
/, and applying the resulting inequality repeatedly, we obtain

iD= n<" (5) " 1= 10 @7

for 0 < j < m. The result then follows from (2.5) and (i) of Theorem 2.1.
To prove (ii), it suffices to remark that given x € [, b], there exists £ € [a,b]
such that |x — €| < (j+ 14, and

D=1 = [, DM~ N,

Hence,
1D/(f = I lies@, 5y < [+ DA D= I,

and (ii) follows from (i).

(Q.E.D.)

THEOREM 2.3. Let L be a differential operator of the form (2.1) such that
(2.2) and (2.5) are satisfied.

W) Ifo<j<mzeZ™ AP, and f e B*{(a,b), then

== (Z) () e

() Ifo<j<m—1,zeZy" de P, and f € B**(a,b), then

1D~ Ileia < 5 (’%’) (7%)' (f'—r)zm—j_m | Lf).
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Proof. Combining (ii) of Theorem 2.1 and (i) of Theorem 2.2, we have

ntl

IL(f— If)H\—( ) I L. 2.8

The result then follows from (i) and (ii) of Theorem 2.2.
(QED.

3. PRELIMINARY N-DIMENSIONAL RESULTS

In this section, we introduce multivariate y-elliptic L-splines and study their
interpolation properties in rectangular parallelepipeds. In particular, we
consider the interpolation of smooth functions, which along with sufficiently
many partial derivatives vanish on the boundary of the domain.

For each positive integer i, 1 <i< N, let —o <a; <b; < w0, let L; be an
mth-order differential operator of the form (2.1) defined on [g;,5;] and satis-

N
fying (2.2) and (2.5) for some constants w; and vy;, and let H= X [a,,5;].
Throughout this section, the norm used is the Z? norm over H. We define
the set of partitions of H by

N
.@E{pz X 4|4, € P(a,, b)), 1 < Z\!},
and set
N o
meE{ZE ®z'|zieZZ‘i,1<i<N}, f= max 4,
i=1 I<isK

Moreover, for each 1 <i< N, let I; denote the interpolation mapping from
C™ Ya,, b)) to Sp(L;,4;,2Y), for all z € Z%,, 4, € P(a;, b)), defined in Section 2,

andlet I'= X I;. We remark that if fe C™1(H), then I,{ /') is interpreted to

mean that I 1s applied to f, viewed as a function of the ith variable x,, with
the other variables x;, | <j< N, j# i, held fixed. As in [5], it is elementary to
verify

Lemma 3.1. LI f=LI f,1<i,j<N, for all fe C"'(H).

Lemma 3.2. Ifi #j, then DI(f))=I{D,f}, for all f such thar
D¥D;f(x)=D;Dff(x)e C(H) for O<k<m—1.

We now prove a multivariate analogue of Theorems 2.2 and 2.3.
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TreOREM 3.1. (i) If et is such that . <m,z € Z,", p € 2, and f € B, (H), then
N=1

( )m ul]:—‘[l(bj_"l __aj+l)m—aj+1
Vi ™

J=i

ID*(f— INf)n<Z

where
- k
Dx= X D¥  forl<k<N.
=1

(i) If «is such that a <m,ze€ Z,", p € P, and f € Bjy *"(H), then

. m—ocj+1
b1 — a1
ko

-

Proof. We prove only (i), since the proof of (ii) is essentially the same. The
proof is by induction on the dimension N and the observation that from

Lemma 3.2 we have
1D*(f — I¥ )| < |1 DE(D§- f — Iy D31 )
+ | DN I(D%_y f— D% IV f)|

m! (A \"mN ~
<——(—ﬂ) Iy D3 £

yyogl\ 7

N-1

2m-—oti 1
Yi% '( ) ]J'—:,['Y—J(

X ( X Lj)L,-*Li]j‘i‘.lf

J=itl

ID*(f = IV f) <Z

by — a1
(BB - 1 L,

N—1

where we have used Theorems 2.1 and 2.2, and the Rayleigh-Ritz inequality.
(Q.ED.)

If L; = D™ and « = 0, the results of Theorem 3.1 can be greatly simplified.

COROLLARY. Let L; = D™, 1 <i<N.

) IfzeZ™ pe?, andfe B,"(H), then

N—l

If- Ian<Z( A TIC= 2 o))
i
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(i) IfallzeZ™ pe P, andfe B™2m(H, then

A 2m M= \m N
-r 1S @ T2 & o) oes)
J f||<;(ﬂ_ L ] ) A f)

/

Finally, we remark that C™¥(H) < B™(H) and C"W-D(H) < B™ 2"(H).

4, N-DIMENSIONAL RESULTS IN RECTANGULAR PARALLELEPIPEDS

In this section, we study the interpolation by y-elliptic L-splines in 2
rectangular parallelepiped, H, of functions which do net necessarily vanish
on the boundary of H. In the proof of Theorem 4.1, fundamental use is made
of a form of the Calderon Extension Theorem, ¢f. [4], which we recall.

N
LemMa 4.1, Let H, = X [a;',b;'] and H, = X [a,2,b;] be two rectanguiar
i

parallelepipeds in RY suclz that H <intH.. If ¢ 1,; any nonnegative integer, there
is a bounded linear extension mapping €: C*(H ) — C*(H,) such that eu(x)=u(x},
x € Hy, for all u e C*(H,).

Foreach I <i< N, let L, be an mth-order differential operator of the form
(2.1) defined on [a2, b; 2] such that L, satisfies (2.2) and (2.5) for some constants
wyand y;. Foreachp = X 4; € P(H,), we define a partition p of H, as foliows:
if =1

Ai;ai :xi <xi < e <x1!}4'+1 =bi2,
define

dia? =x7F<xiFl <o <gl = x0 < xf <o < XM

— bil < xM+2 P xM+k+l bi2,

-~ N .
where k is chosen so that A =A;,and p= X 4;. Moreover,ifz=Q® z'€Z,”,

an
N i=1 "i=1
where p € Z(H,), we define = ® Zte Zz™, where Z' is the M -+ 2k vector

(m,....m,zi% .zt m,. .. m).
It is easy to verify that if fe C™1(H,), then

I”(@ Sp(L,,A,,z‘))f(x) IN(® Sp(L;, 4,, ”")f(x) forallxe H,.

This is true because for each 1 < i < N, the interpolation over the subintervals
[a?,a,'l, [a;!,b;'], and [b;},5,%] is “local”.
Combining this observation with Theorem 3.1, we obtain

THEOREM 4.1. There exists a positive constant, K, such that
() if o satisfies a <m, if ze Z,", p € p(H,), andfe C™N(H\), then
| D*(f— INf)“LZ(Hl) < K({py"= |f||BM(Hw 4.1)
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and
(ii) if « satisfies G<m, if zeZ,™, p € p(H,), and f& C"V*D(H,), then

| D*(f — INf)”Lz(Hl) < K(ﬁ)zm—a”fusmdmml)- 4.2)
Proof. By our previous observation it suffices to bound the quantity
N - .
(- 1*(8 Sp (L4 2)
i=1

where ¢ is the mapping given in Lemma 4.1. Inequalities (4.1) and (4.2) follow
directly by applying Theorem 3.1 to bound the quantity given in (4.3).

(Q.ED.)

, 4.3

L2(H3z)

5. N-DIMENSIONAL RESULTS IN BALLS

In this section, we study the interpolation by y-elliptic L-splines in an
N-dimensional ball, of functions which do not necessarily vanish on the
boundary of the ball. To define the interpolation mapping, fundamental use
is made of an extension technique of Lions, cf. ([], p. 218).

LeMMA 5.1. Let Q2 be the ball of radius R with center at the origin. For every
nonnegative integer, s, the mapping 0, given by

u(x)5 ifx € 'QR‘)

Hsu(x)E s+1 Rx
S

where the constants A; are chosen to satisfy

o)

O0<i<s, is a bounded linear mapping of C(§2z) into C(£2,z).

(K~ Rx) xe =20 G

j=0

IfH= X [a;,b;] is a rectangular parallelepiped such that 2, < int H < £,

ifpeP= .@(H ). z€ Z,", and for each 1 <i< N, L, is a differential operator
of the form (2.1) on [a,,b ] such that (2.2) and (2.5) hold for some constants
w; and vy, then for each f e C*(£2z), m — 1 < 5, we may define

N
v (®1 Sp(L;, 4, Zi)) 0 f

as an “interpolation” of /. We remark that this “interpolation” can be explicitly
computed, since the finite number of evaluations of 8, fand some of its partial
derivatives, required at points of p outside £2, can be made explicitly by means
of (5.1).
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Using Theorem 4.1, we may give the following error bounds for this “inter-
polation” scheme.

THEOREM 5.1. There exists a positive constant, K, such thas

(i) if o satisfies a <m,ifz€Z,", pe P, and f € C™(L2g), then

|

1 N -~
D% (£~ 1"(© 3L 4 o %m KOS I (5

and
(i) if o satisfies & <m, if z€ Z,", p € P, and f € C"N*D(Qy), then

HDa (f— el (.é_él Sp(L;, 4,, zi)) 0m(N+1)f)

<K’_ 2m—§|‘ i 2, 2 N 5,7
L @n) (P) 17 1ls 2r) ( J)
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