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1. INTRODUCTION

In this paper, we generalize the results of [2] and [3] concerning interpolation
by multivariate L-splines defined on rectangular partitions. In Section 2, we
sharpen the results of [6] for interpolation by "y-elliptic L-splines", cf.
Section 2, of one variable. In Section 4, we define and study the interpolation
of smooth, real-valued functions which are defined on a rectangular parallele
piped and in Section 5 we define and study the interpolation of smooth,
real-valued functions which are defined on a ball. We remark that the inter
polation schemes introduced in this paper may be used, in an obvious manner,
to develop multivariate quadrature schemes. The details of this development
are left to the reader.

Now we recall some multivariate notation which will be used throughout
this paper. For any point

If 0( == (O(j, ... , IXN) is an N-tuple with nonnegative integer components, then

0"'1 (J"'N
D'" - DOCN DOCN - ...= I ... N = ~ ."'1 ~ "'N'

U_"I uXN

IIXI == IXI + ... -+ IXN, and Ii == maXI,;;1 ';;NIXN- If Q is a closed, bounded set in
RN and n ,;;;; 117 are nonnegative integers, then

C,t'(Q) == {IE Cm(intQ)I/is real-valued, L sup ID"'!(x) I< ro,
locl';;mXE;ntD

and DOClex) = 0for all x E aQ and for all ex with IIXI ,;;;; n - I}
and

II/ilC'''(D) == L sup IDOC/(x) I,
locl,;;m xEintD

Similarly, if t is a positive integer and n is a nonnegative integer with n ,;;;; t,
Bnt(Q) is the set of all real-valued functions /E L 2(Q) such that Doc/exists
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almost everywhere and is a square integrable function for all a such that
a. <. t, D<XIE C(.o) for all O!: with IO!:I <. Nt - 1, and D<XI (x) = 0 for all x E a.o
and all a with lal <. n - 1. We set

1I/IIBt(,Q) := (2: IID<X Illi2(,Q»1/2

for all/E B/(.o), where the summation is over all O!: with a. <. t. Moreover, we
define

B~' 2t(.o) := {fEB/(.o)ID/IE Bt(.0), 0 <. k <. t, 1 <. i <. N},
and

where the summation is over all k, 0 <. k <. t, and all i, 1 <. i <. N. Finally, the
symbol K will be used repeatedly to denote a positive constant, not necessarily
the same at each occurrence.

2. ONE-DIMENSIONAL RESULTS

In this section, we introduce y-elliptic L-splines and study their properties.
In particular, we prove analogs of Theorems 6-9 of [6], which give error
bounds for interpolation by L-splines.

Given -OCJ < a < b < OCJ, for each nonnegative integer M, let [JJM denote
the set of all partitions, Ll, of [a,b], of the form

Ll:a = XO< Xl < ... < x M < x M +! = b,

and let [JJ:= U~=O [JJM' Define Lf := maxo <;1 <;M (Xi+! - Xi). Throughout this
section, the norms used are the L 2 norm over [a, b] except where explicitly
indicated otherwise. If m is a positive integer, let L be any mth-order linear
differential operator of the form

m

L(u(x»:= 2: aix) Di u(x),
i=O

m;;;:, 1, (2.1)

where we assume that the coefficient functions aix) E BII/(a,b) and that there
exists a positive real number w such that

all/(x);;;:, w > 0 for all x E [a, b]. (2.2)

The formal adjoint of L is given by L*(v(x»:= 2:j=o (-I)i Di(aix)v(x».
For each Ll E [JJ, let Z.am denote the set of admissible incidence vectors defined
as follows: if Ll E [JJ0,

if Ll E [JJM, where M> I,

Z.am := {zlz is an M-vector with integer components Zi satisfying 1 <. ZI <. m}.
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For each LI E f!JJN and Z E Z,jm, Sp(L,LI,z) denotes the collection of all real
valued functions, sex), called L-splines, defined on [a, b] such that

L*L(s(x» = 0 for all x E (Xi, xj+l), for each 0 .;;;j.;;; M, (2.3)
and

Dks(XL ) = Dks(xj+) forall O.;;;k.;;;2m-l-zj, l.;;;j.;;;M. (2.4)

An L-spline, sex), is said to be a y-elliptic L-spline if and only if

yliDm wll .;;; IIL(w)11 (2.5)

for all WE Bmm([a,bD. Finally, we define the interpolation mapping
I: Cm-I(a,b) -»- Sp(L,LI,z), by l(f) == sex), where

fDkf(xj), O.;;;k,;;;zj-l, l.;;;j.;;;M,
Dks(x

j
) == I

lDkf(xj), O.;;;k.;;;m-l, j=O,M+1.

We remark that this mapping actually corresponds to the type I interpolation
of [6] and as such, the nontrivial fact that it is well-defined was shown in [6].
Mappings corresponding to the types II, III, and IV interpolation of [6] can
be defined, too, for which results analogous to those of this paper are true.
The details are left to the reader.

We begin by recalling the "integral relations" of Theorems 4 and 5 of [6].

THEOREM 2.1. Let L be a differential operator of the form (2.1) such that
(2.2) is satisfied.

(i) lfz E Z,jm, LI E f!JJ, andfE Bm(a,b), then

IIL(f)W = IIL(f -If)!lZ + IIL(lf)!i 2
•

(ii) lfz EZ,jm, LI E f!JJ, andfE B2m(a,b), then

IIL(f-if)112
.;;; Ilf - .ifIlIIL* LU)II.

Now we prove improved analogs of Theorems 6-9 of [6].

THEOREM 2.2. Let L be a differential operator of the form (2.1) such that
(2.2) and (2.5) are satisfied.

(i) .if0 .;;;j.;;; m, z E ZJn, LI E f!JJ, andfE Bm(a,b), then

I[Dj(f - .if)!1 .;;; m.; (:!)m-j IIL(f-If)11 .;;; 1~: (':!r-j

ilLfll.
y]. 7T yJ. 7TJ

(ii) If0 .;;;j.;;; m -1, z EZ,jm, LI E f!JJ, andfE Bm(a,b), then

m' ( 7T )1/2(Lf),"-j-1/2
[IDj(f- If)IILco(a, b) .;;; 2--":t -.-,-1 - IIL(f - .if"):1

y]. ]T 7T

m! ( 7T ')1 /2(J)m- i -1 /2.
.;;;2~ ---;--+1 - IILfll.y]. ] 7T
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Proof Sincef-IfE CIn-l[a,b], we can apply to it Rolle's Theorem; thus
there exist points Wi)}t:t1- i in [a,b] such that

where

o<: I <: M + I - j, O<:j<:m-I,

and {;(j) {;(j+1) {;(j)

~l ""'" ~l ""'" Sl+l'

0<: 1<: M + 1- j, 0 <:j <: m - 1. Moreover, Ig~21 - g~211 <: (j+ I),J for any
0<: 1<: M - j, 0 <:j <: m - 1. Hence, applying the Rayleigh-Ritz inequality,
we have

(2.6)

for 0 <: 1<: M - j, 0 <:j <: m - 1. Summing both sides of (2.6) with respect to
I, and applying the resulting inequality repeatedly, we obtain

IIDi(f- If)[1 <: ~/ (~)In-i IIDIn(f- If)11
J. 7T

(2.7)

for 0 <:j <: m. The result then follows from (2.5) and (i) of Theorem 2.1.
To prove (ii), it suffices to remark that given x E [a, b], there exists gp) E [a, b]

such that Ix - gF)1 <: (j+ I),J, and

Di(f- If) (x) = f(J) Di+l(f- If) (t) dt.
~l

Hence,

IIDi(f- If)IILCo(a, b) <: [(j + 1),J]l/2I1Di+l(f- If)[[,

and (ii) follows from (i).
(Q.E.D.)

THEOREM 2.3. Let L be a differential operator of the form (2.1) such that
(2.2) and (2.5) are satisfied.

(i) If0 <:j <: m, Z EZ,l", LI E f!JJ, andfE B21n(a,b), then

1 ( ')2 (,J)21n-iIIDi(f - If)!1 <: j! ~';. IIL* Lf[[·

(ii) If0 <:j <: m -I, Z EZLjIn, LI E f!JJ, andfE B21n(a,b), then

. 1 (m!)2( 7T )1/2(,J)21n-i-1/2
IIDJ(f-If)IIV''(a, b) <: 2j! y j +I;' IIL*Lfll.
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Proof Combining (ii) of Theorem 2.1 and (i) of Theorem 2.2, we have

IIL(f-if)ll,;;;; m! (:!)m IIL*Ljll.
y 7T

The result then follows from (i) and (ii) of Theorem 2.2.

(2.8)

(Q.E.D.)

3. PRELIMINARY N-DIMENSIONAL RESULTS

In this section, we introduce multivariate y-ellipticL-splines and study their
interpolation properties in rectangular parallelepipeds. In particular, we
consider the interpolation of smooth functions, which along with sufficiently
many partial derivatives vanish on the boundary of the domain.

For each positive integer t, 1< t < N, let -00 < ai < hi < 00, let L i be an
mth-order differential operator of the form (2.1) defined on [ai,b;] and satis

N

fying (2.2) and (2.5) for some constants Wi and Yi' and let H =. X [a!>b,).
i~1

Throughout this section, the norm used is the L2 norm over H. We define
the set of partitions of H by

f!JJ =. {p =. 51 L1 i ILl; E f!JJ(ai' bi), 1,;;;; i,;;;; N},

and set

p =. max Ll i •
1:::; i~N

Moreover, for each 1 < i < N, let Ii denote the interpolation mapping from
Cm-l(ai, b;) to Sp (L i,LI i, Zi), for all z EZ:Jp LI i E f!JJ(ai' bi), defined in Section 2,

i
and let Ji =. X I j • We remark that ifjE Cm-I(H), then I;U) is interpreted to

j~l

mean that Ii is applied to J, viewed as a function of the ith variable Xi, with
the other variables Xj, I ,;;;;j < N,j =I t, held fixed. As in [5], it is elementary to
verify

LEMMA 3.2. If i =I j, then D;(Iif) = IlDd),for all j such that

D/ Dd(x) = DiD}' j(x) E C(H) for 0 < k < m-1.

We now prove a multivariate analogue of Theorems 2.2 and 2.3.
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THEOREM 3.1. (i) If IX is such that Ii < 111, Z E Zp"', PE gP, andfE Bmrn(H), then

IID<l(f_ IN /)11 <*_1_ (J1)rn-<li nN-

1

! ('bi+! - aH1)rn-<li+
1

L y. IX· ! 7T y. 7T1=1 1 1 i=1 )

where

k

Dk<l== X Dfi forl<k<N.
i=1

(ii) If IX is such that Ii < m, Z E Zp'n, p E gP, andf E B'/:.' 2rn(H), then

IID<l(f_ IN /)11 <*_1_ (Ji)2m-<l1nN-
1
! (bi+1 - ai+!)rn-<l)+l

?YiIXi! 7T •• y. 7T1=1 )=1 )

Proof. We prove only (i), since the proof of (ii) is essentially the same. The
proof is by induction on the dimension N and the observation that from
Lemma 3.2 we have

IID<l(f- IN f)11 < IID~N(D~_I f - IN D~_I f)11

+ IID~N IN(D't.-d - D't._1 IN-I f)11

+ (bN- aN)m-<lN_I_IID't._I(LNf_ IN-I LNf)ll,
7T YN-I

where we have used Theorems 2.1 and 2.2, and the Rayleigh-Ritz inequality.
(Q.E.D.)

If L i == Dt' and IX = 0, the results of Theorem 3.1 can be greatly simplified.

COROLLARY. Let L i == Dr, 1 < i < N.

(i) IfZ E Zprn, p E gP, andfE Brn"'(H), then
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4. N-DIMENSIONAL RESULTS IN RECTANGULAR PARALLELEPIPEDS

In this section, we study the interpolation by y-elliptic L-splines in a
rectangular parallelepiped, H, of functions which do not necessarily vanish
on the boundary of H. In the proof of Theorem 4.1, fundamental use is made
of a form of the Calderon Extension Theorem, cf. [4J, which we recall.

N N
LEMMA 4.1. Let H, == X [a;',b;'] and Hz == X [a?,b i

Z
] be two rectangular

~, ~,

parallelepipeds in RN such that H, c intH2 • If t is any nonnegative integer, there
is a boundedlinear extension mapping E: Ct(H,) -»- C/(Hz) such that EU(X) = u(x),
X E H,,for all u E Ct(H,).

For each 1< i < N, let L i be an mth-order differential operator of the form
(2.1) defined on [a/,bi

2
] such thatL i satisfies (2.2) and (2.5) for some constants

N

Wi and Yi' For eachp == X Ll i E f!lJ(H,), we define a partition p ofH 2 as foHows:
if i~'

Lli:a;' = XiO < x;' < ... < xf+' = bi
l,

define
J iaj 2 = Xjk < xjH' < < ai' = Xi

D < x;' < ... < xtHI

= b;' < xr+2 < < X~+k+1 = b?,
_ N N

where k is chosen so that J i = J"i' and j5 == X J;. Moreover, if z == ® Zi E Z/"'
N i~l 'i~'

where p E f!lJ(H,), we define z== ® Zi E Zpm, where Zi is the M + 2k vector
i~'

(111, .. .,m,z,t, .. "ZM
i ,nl, ... ,m).

It is easy to verify that iffE cm-'(H2), then

IN C~ SpeLl, Lli,Zi))f(X) = IN C~, Sp(L;, Ji,Zi))f(X), for all x E HI'

This is true because for each 1 < i < N, the interpolation over the subintervals
[a?,a;'], [a;',b;'], and [b;',b,2] is "local".

Combining this observation with Theorem 3.1, we obtain

THEOREM 4.1. There exists a positive constant, K, such that

(i) if ex satisfies & <m, ifz EZp
m, p E p(H,), andfE CmN(H,), then

IID"'(f- IN f)[IL2(HI) < K(p)m-"llfiIBm(Hl)' (4.1)
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and
(ii) if QI; satisfies Ii < m, if Z E Zpm, p E p(H1), and f E cm(N+I)(H1), then

IIDIX(f- IN f)1IL2(H
1

) < K(p)2m-lXllfIIBm,2m(H!l' (4.2)

Proof. By our previous observation it suffices to bound the quantity

(4.3)

where € is the mapping given in Lemma 4.1. Inequalities (4.1) and (4.2) follow
directly by applying Theorem 3.1 to bound the quantity given in (4.3).

(Q.E.D.)

5. N-DIMENSIONAL RESULTS IN BALLS

In this section, we study the interpolation by y-elliptic L-splines in an
N-dimensional ball, of functions which do not necessarily vanish on the
boundary of the ball. To define the interpolation mapping, fundamental use
is made of an extension technique of Lions, cf. ([1], p. 218).

LEMMA 5.1. Let DR be the ball ofradius R with center at the origin. For every
nonnegative integer, s, the mapping Os given by

j
u(x), ifx E DR'

Os u(x) == s+1 (RX j ) .
j~/ljU TXl- R(x)(!xl-R)x ifXED2R -DR, (5.1)

L

where the constants Aj are chosen to satisfy

sfl Aj( -j )1 = 1,
j~1 S + 1

0< 1< s, is a bounded linear mapping ofCS(DR) into CS(D2R).
N

If H == X [a;,biJ is a rectangular parallelepiped such that DR c intH c D2R,
i=1

if p E f!lJ == f!lJ(H), Z E Zpm, and for each 1 < i < N, L i is a differential operator
of the form (2.1) on [ai,b;] such that (2.2) and (2.5) hold for some constants
Wi and Yi' then for each!E CS(DR), m - 1< s, we may define

IN(§ SP(Li,Lli,Zi»)Osf

as an "interpolation" off. We remark that this "interpolation" can be explicitly
computed, since the finite number of evaluations of Bsfand some ofits partial
derivatives, required at points ofp outside DR' can be made explicitly by means
of (5.1).
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Using Theorem 4.1, we may give the following error bounds for this "inter
polation" scheme.

THEOREM 5.1. There exists a positive constant, K, such that

(i) ifrxsatisfies ii <,m, ifz EZp
m, p E [!JJ, andfE CmN(QR ), then

and
(ii) ifrx satisfies ii <, m, ifz EZp

m, p E[!JJ, andfE C In(N+1l(QR), then

l
iD"(f- IN (0 SP(Li,Lli,Zi») Bm(N+IJf)Ir <, K(p)Zm-"llfiIBm,2m(QR)' (53)
I ;=1 L2(S"JR)
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